学掌门数据分析师培训
数据分析基础知识介绍
2024-08-22

一、什么是数据分析


指用专业的统计分析方法对大量数据进行分析,并加以详细研究和概括总结,提取有价值的信息,形成有效的分析结论,从而影响业务决策



二、数据分析的重要性


一切事物,如果不能量化它,我们就没法真正理解它;如果不能理解它,我们就没法真正控制它;如果不能控制它,我们就没法真正改变它。


在大数据时代,人类大脑无法理解的复杂,而数据分析可以解读其中的含义;面对难以掌控的未知因素,而数据分析可以预测其中的规律。


数据分析能够弥补我们对直觉的过分自信,更科学合理地思考问题和做决策。



三、数据分析的作用


现状分析,过去发生了什么?例如通过描述性统计诊断业务状况


原因分析,为什么会发生?例如通过维度拆解和指标拆解等分析方法,并结合实际业务,寻找业务异常点


预测分析,将来可能发生什么?例如根据用户行为数据预测是否即将流失,并对即将流失的用户采取挽留措施



四、如何数据分析?


1.明确分析目的与思路


● 思路决定结果,必须明确数据分析目的,形成清晰的思路框架,避免为了分析而分析


2.数据收集 


基于分析目的去收集相关的数据集,大部分为公司的内部数据,也可能涉及外部数据


● 关系型管理数据库(RMDB,利用SQL语言取数),数据仓库(WareHouse,利用HiveSQL取数)

● 文件:excel、csv、txt等

● 系统/平台:手动导出、selenium等python自动化脚本

● 互联网:网络爬虫

● API:requests请求库、解析json文件等


3.数据清洗


将数据整理成整洁干净并利于接下来分析的结构和格式,数据可能分布得比较零散,需要对各类数据集进行集成


● 异常值、错误值、缺失值处理

● 字段的拆分、合并、信息提取、格式转换等

● 表关联:左、右、外(全)、内连接、笛卡尔积表等(左半、左反连接等)

● 表结构转换:行转列(长表转宽表)、列转行(宽表转长表等)、行列转置、数据透视(逆透视)


4.数据分析


需要掌握常用的分析方法和机器学习算法


● 基本分析方法:构成分析、对比分析、分组分析、交叉分析、趋势分析等

● 高级分析方法:线性回归、逻辑回归、决策树、随机森林、聚类等算法


5.数据可视化


将分析观点用图表的形式呈现出来


● 字不如表,表不如图,一图胜千言

● 基本统计图表:饼图、条形图、折线图、散点图、雷达图、漏斗图等

● 专业统计图表:直方图、热力图、箱线图、提琴图、核密度估计图等


6.数据分析报告


将重要的分析结论和发现汇总成PPT,形成一份完整的数据分析报告


● 金字塔结构,总分总形式

● 结论先行、由上而下、归纳分组、逻辑递进

● 结构清晰,层次分明,突出重点,明确要点


7.数据应用


● 将可行性的建议方案应用到实际业务场景,并解决公司的实际业务问题

● 为业务决策提供数据支持,实现数据驱动业务增长



五、数据分析工具


工欲善其事必先利其器,需要掌握的主流数据分析工具


● Excel,非常重要的基础

● PowerBI/Tableau,强大的商业智能BI工具

● SQL,必备的数据库数据查询语言

● Python,人工智能的首选计算机语言

 


更多数据分析相关推荐:

数据分析更多干货文章

数据分析就业培训


文章来源:网络  版权归原作者所有

上文内容不用于商业目的,如涉及知识产权问题,请权利人联系学掌门小编(021-64471599-8103),我们将立即处理

立即报名